CMS程序网 加入收藏  -  设为首页
您的位置:CMS程序网 > 知识库 > 正文
X射线荧光光谱仪的原理是什么?
X射线荧光光谱仪的原理是什么?
提示:

X射线荧光光谱仪的原理是什么?

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。 在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量差异的。因此,物质放射出的辐射,这是原子的能量特性。主要使用X射线束激发荧光辐射,第一次是在1928年由格洛克尔和施雷伯提出的。 透射测定 光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过第一个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。 绝对测量需要知道单色仪的绝对透射率:对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫外线的这些测量有相当大的实验困难,因此通常使用辅助单色仪。在各种入射角的情况下分别测量衍射光栅的效率。在许多实验步骤中已成功地避免了校准上的困难。 以上内容参考:百度百科-X射线荧光光谱仪

X射线光谱
提示:

X射线光谱

当高速运动的电子或带电粒子(质子、α粒子等)轰击物质时其运动受阻,和物质发生能量交换,一部分动能转变成X射线光子辐射能,以X射线形式辐射出来。X射线管产生的X射线光谱,被称为原级X射线谱,可以分为连续光谱和特征光谱两类。当所加的管电压很低时,只产生连续光谱;当所加电压大于或等于管材的激发电势时,特征光谱和连续光谱叠加出现(图10.1)。 图10.1 特征光谱和连续光谱 10.1.1.1 连续光谱(白色X射线) 加速电子撞击到阳极上突然被减速,辐射出电磁波,这种辐射称为轫致辐射。其强度分布随加速电压的变化而改变,在连续光谱短波一侧存在着短波限(λmin),相当于电子撞击在阳极上将其全部能量以X光子形式释放的情况。因此,短波限λmin跟阳极物质的种类无关,仅取决于外加电压V(kV)的大小,短波限和加速电压V(kV)的关系如下: λmin=12.4/V 一般来说,电子并非碰撞一次就会停止,而是碰撞多次才逐步丧失能量,电子的能量仅部分释放,所产生的X光子能量比hνmax要小(波长要比λmin长)。 10.1.1.2 特征光谱(单色X射线) 若将加速电压提高,超过某一极限电压(阳极元素特有的值,称为激发电位)时就会产生具有阳极元素特征波长的特征光谱,不同元素具有不同特征的X射线。特征线波长与原子序数的关系如下: 现代岩矿分析实验教程 式中:C为常数;Z为原子序数;σ为常数(在Kα系谱线中,σ=1,K=3/4;在Lα系谱线中,σ=7.4,K=5/36)。 上式为莫斯莱定律,是英国年轻物理学家莫斯莱(Moseley)1913年依据实验结果确定的。莫斯莱定律是荧光X射线定性分析的基础。